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ABSTRACT

LPCNet vocoder has recently been presented to TTS community and
is now gaining increasing popularity due to its effectiveness and high
quality of the speech synthesized with it. In this work, we present
a modification of LPCNet that is 1.5x faster, has twice less non-
zero parameters and synthesizes speech of the same quality. Such
enhancement is possible mostly due to two features that we introduce
into the original architecture: the proposed vocoder is designed to
generate 16-bit signal instead of 8-bit µ-companded signal, and it
predicts two consecutive excitation values at a time independently of
each other. To show that these modifications do not lead to quality
degradation we train models for five different languages and perform
extensive human evaluation.

Index Terms— LPCNet, neural vocoder, multisample speech
synthesis

1. INTRODUCTION

Deep learning has been evolving greatly during this decade and now
its techniques are applied to numerous tasks including that of text-
to-speech synthesis (TTS). Traditional hand-engineered compound
pipelines are being replaced by neural approaches. The most popular
one consists of two parts: a backend model that converts text into a
sequence of acoustic features and a vocoder that generates speech
conditioned on these features. Tacotron [1], Transformer TTS [2]
and FastSpeech [3] are among possible solutions that can be used
for the first part of this neural TTS pipeline.

As far as vocoders are concerned, the first truly successful
neural-based model was WaveNet [4]. Dilated causal convolutions
that are the main building blocks of WaveNet significantly increase
receptive field which allows this model to keep track of long-term
correlation between speech samples. WaveNet reached state-of-
the-art synthesis quality and outperformed concatenative methods.
However, there are several problems with this architecture. For
example, synthesized speech often suffers from noise that causes
large spectral distortion in a high-frequency band [5]. Also, what is
more important, WaveNet’s autoregressive nature makes this model
inapplicable to real-time synthesis.

There are several architectures (ClariNet [6], Parallel WaveNet
[7], WaveGlow [8]) that use the concept of flow (e.g. Inverse Au-
toregressive Flow [9]) to enable parallel synthesis: a series of invert-
ible trainable transformations is applied to some simple distribution
(e.g. standard normal in ClariNet) so that resulting distribution re-
sembles that of real speech signal samples. Other architectures try
to overcome computational complexity of autoregressive vocoders
by applying a number of sophisticated compression and sampling
techniques (e.g. WaveRNN [10]) or by designing new structure of
convolution blocks (e.g. FFTNet [11]).

All of these models can achieve very good results without any
use of classical techniques of speech synthesis. However, in many
recent studies very good results have been achieved by combining
deep learning approach with classical Source-Filter model of speech
production (e.g. [5, 12, 13, 14]). The Source-Filter model is based
on a strong assumption of independence of ”source” associated with
periodic glottal excitation (for vowels) or turbulent noise (for frica-
tives) and ”filter” associated with the form of the vocal tract. Such
simplification leads to a very efficient algorithmic and hardware im-
plementation of speech coding and speech synthesis based on linear
filtering. For instance vocal tract transfer function can be approxi-
mated reasonably well with an all-pole linear filter of sufficient order.
In case of linear predictive coding (LPC) coefficients of the filter can
be calculated from the output of the feature generation neural net-
work (e.g. from mel-spectrum generated by Tacoton). The remain-
ing part (i.e. generating excitation signal) can be solved by another
neural network. This is the core idea of LPCNet [15]. It has become
quite popular [16] due to high quality of the synthesized speech and
efficiency both in terms of time and memory.

We propose a modification of LPCNet aimed at improving effi-
ciency even further without any degradation of speech quality. Al-
though being conceptually the same, our modification has two ma-
jor architecture differences from the model described in the original
LPCNet paper. First, we generate 16-bit signal instead of 8-bit µ-
companded signal. It allows us to get rid of the signal embedding
matrix which is necessary for the original LPCNet since each of 256
possible values of signal is represented as a separate class. To enable
16-bit sampling we design our LPCNet so that it predicts mean and
variance parameters of univariate Gaussian distribution N (µt, σ

2
t ).

Thus, excitation et is sampled fromN (µt, σ
2
t ) rather than from cat-

egorical distribution produced by the softmax layer. The second dif-
ference is that two consecutive excitation values are sampled at a
time independently of each other. Although such approach makes an
implicit assumption of conditional independence of two consecutive
excitation values, it turns out that it does not have negative impact on
the quality of the generated speech. At the same time, it significantly
reduces time necessary for synthesis.

Throughout this paper we will refer to LPCNet model from the
original paper as Original LPCNet and to our modification of the
original architecture as Gaussian LPCNet, or Multisample Gaussian
LPCNet. It’s worth noting that in this modification only excitation
et is generated in multisample and non-autoregressive way whereas
we still need all M previous speech signal samples st−M+1, .., st
(where M is the order of LPC analysis) to generate the next sample
st+1 (see Section 3 for details).

Our paper is structured as follows: in Section 2 we give an
overview of Original LPCNet model; in Section 3 we describe our
proposed modifications that lead to efficiency improvement; in Sec-
tion 4 we describe an experimental setup and compare Original and
Gaussian LPCNet performance in terms of quality and efficiency.
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We conclude in Section 5.

2. ORIGINAL LPCNET

LPCNet utilizes Source-Filter model of speech production with Lin-
ear Predictive Coding [17] being used for speech signal analysis. An
all-pole filter H(z)

H(z) =
1

1−
∑M
k=1 akz

−k
(1)

is known to be a good approximation of vocal tract transfer function.
Such filter choice leads to a very simple signal representation:

st = et + pt, pt =

M∑
k=1

akst−k, (2)

where M is the order of LPC analysis, ak are LPC coefficients, st
is speech signal, pt is its linear prediction and et is excitation, or
residual signal.

2.1. General Architecture

Original LPCNet uses 18-band Bark-frequency cepstrum [18] to
compute 16 LPC coefficients. Excitation is predicted by a combina-
tion of two neural networks: encoder and decoder. Encoder network
operates on non-overlapping 10-ms frames and processes input vec-
tors consisting of 18 Bark-scale cepstral coefficients and 2 pitch
parameters (period and correlation). The processing is performed
with one-dimensional convolutions and the result f is sent to the
decoder. Decoder network operates at sample level (16 kHz speech
signals are considered). It is based on two-layer Gated Recurrent
Unit RNN (GRU [19]) and predicts excitation et based on acoustic
feature vector f that comes from encoder and corresponds to the
current frame, previous excitation et−1, previous signal value st−1

and current linear prediction pt. After et is generated, it is added to
linear prediction pt that is calculated using previous 16 signal sam-
ples st−16, .., st−1 and LPC coefficients a1, .., a16 obtained from
18 Bark-scale coefficients corresponding to the current frame. This
algorithm is summarized in Figure 1.

2.2. Algorithm Details

Before feeding speech signal to Original LPCNet, a first order linear
pre-emphasis filter E(z) is applied to it:

E(z) = 1− αz−1 (3)

The model produces excitation by sampling from categorical dis-
tribution parameterized by the outputs of the softmax layer in the
decoder. It is impractical to use a large number of softmax classes,
so it’s necessary to apply some kind of quantization to signals which
the model deals with. Original LPCNet uses non-linear 8-bit µ-law
quantization. However, this quantization introduces audible noise
into high frequencies. Applying pre-emphasis filter to the input and
de-emphasizing (by applying inverse filter) output signal helps to re-
duce the perceived noise.

Since every signal value is represented as one of 256 classes, it
is necessary to map each class to some embedding. Original LPCNet
uses 128-dimensional embeddings.

As far as the most time-consuming part in this model (GRU lay-
ers in sample-level decoder) is concerned, pruning methods are used

Fig. 1. Original LPCNet algorithm [15]. Conversion between µ-law
and linear scales as well as pre-emphasizing and de-emphasizing are
omitted for clarity.

to make the least important weights equal to zeros. Since the sec-
ond GRU layer GRUB is significantly smaller than the first layer
GRUA (16 units vs 384 units), weight pruning is applied only to
GRUA. This layer is pruned to have a specific sparse structure for
efficient vectorization.

The last detail we want to pay attention to is output distribu-
tion modification. When excitation is sampled directly from the out-
put distribution, resulting speech signal has excessive noise (mostly
clicking sounds). To cope with this issue, the authors propose to
change the output distribution: probability of each class given by
softmax layer is multiplied by some frame-level constant (that is de-
pendent on pitch correlation in that frame) so as to lower the tem-
perature of sampling process for voiced frames. Then, class proba-
bilities are normalized to be a valid probability distribution. Finally,
classes with probabilities smaller than some threshold are forced to
have zero probability to rid excitation sampling procedure from un-
necessary outliers.

3. MULTISAMPLE GAUSSIAN LPCNET

As we mentioned in the introduction, Gaussian LPCNet differs from
Original model in two important aspects: it operates on 16-bit signal
samples and it predicts two excitation samples at a time. It becomes
possible due to architecture changes in LPCNet decoder. Figure 2
summarizes these changes. As for encoder, we don’t modify it.

Since Gaussian LPCNet operates on signal that’s not quantized,
pre-emphasis filter is no longer necessary. Nevertheless, we tried
training Multisample Gaussian LPCNet both on pre-emphasized
speech signal and signal without pre-emphasis and found no differ-
ence in quality of resulting models.

3.1. Gaussian Distribution for 16-bit Prediction

While Parallel WaveNet [7] uses mixture of logistics output distri-
bution for the teacher model in knowledge distillation scheme, Clar-
iNet [6] authors show that a single univariate Gaussian distribution
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Fig. 2. Original LPCNet decoder (on the left) and Multisample Gaussian LPCNet decoder (on the right). Conversion between µ-law and
linear scales in Original LPCNet decoder as well as output distribution modification in both decoders are omitted for clarity. 128-dimensional
encoder output vector is denoted by f . LP denotes calculating linear prediction based on frame-level LPC coefficients and formula (2).
Numbers in parentheses stand for numbers of units in the corresponding layers. E(·) means 128-dimensional signal embedding.

is sufficient for high-quality modelling of speech signal samples in
WaveNet architecture. Our studies also showed that in most cases
Original LPCNet output excitation distribution is unimodal, so it’s
no use to model excitation with the mixture of some distributions.
That’s why in order to make our model suitable for generating 16-
bit samples we experimented only with single continuous unimodal
distributions (discrete categorical distribution is not a good choice
because the number of classes is too big). Negative log-likelihood
was chosen as loss function and 16-bit integer signal values were
normalized to belong to (−1.0, 1.0) interval for training purposes.

Laplace, Gaussian and generalized Gaussian distributions were
considered. Generalized Gaussian density function is given by

p(x;µ, α, β) =
β

2αΓ(1/β)
e−(|x−µ|/α)β , (4)

where β and α are positive and Γ(·) is gamma-function. This dis-
tribution generalizes both Laplace and Gaussian distributions by
adding a shape parameter β.

Laplace distribution performed worse than both Gaussian and
generalized Gaussian which, in their turn, synthesized speech of the
same quality. Since Gaussian distribution is easier to sample from
than generalized Gaussian, we decided to go on with it.

Although excitation et should be sampled from Gaussian dis-
tribution N (µt, σ

2
t ), Gaussian LPCNet predicts parameters µt and

log σt rather than µt and σt to avoid situations when negative value
of σt is predicted by the network. Also, log σt is clipped by a con-
stant −9 from below for numerical stability during training. These
two tricks are borrowed from ClariNet [6].

3.2. Multisample excitation prediction

Even though the choice of continuous output distribution allows us
not to use embedding matrix which significantly decreases num-
ber of parameters (mostly in input-to-hidden matrices in GRUA

layer), it has almost no effect on synthesis time because multipli-
cation of GRUA input-to-hidden matrix by an embedding vector is
already highly optimized in Original LPCNet (by pre-computing ma-
trix product of input-to-hidden matrix and embedding matrix). So,

in order to reduce time complexity we change the architecture so as
to predict two consecutive excitation samples at a time.

The modified architecture is summarized in Figure 2. We had
to increase the number of GRUB units to 32 since Multisample
Gaussian LPCNet with 16 GRUB units produced very noisy speech.
Gaussian distribution parameters for excitation samples et+1 and
et+2 are calculated as follows:

h
(j)
t = Wjht, [µt+j , log σt+j ]

T = FC2(FC1(h
(j)
t )) (5)

where j = 1, 2 and ht is the output of GRUB layer. W1 and W2

are 32x32 projection matrices, fully connected layer FC1 has 128
units and tanh activation function, fully connected layer FC2 has
2 units and no activation. Thus, in Multisample Gaussian LPCNet
GRU is run once per two samples rather than once per each (similar
approach is used in SampleRNN [20] for unconditional generation).

3.3. Gaussian Distribution Modification

If we sample excitation et directly from Gaussian distribution with
parameters µt and σ2

t predicted by the network, synthesized speech
will contain some amount of noise. As in Original LPCNet, this
noise will mostly take shape of clicking sounds. So, we slightly
modify the distribution that we sample from.

Output distribution modification consists of two stages. On the
first one, we get rid of variance outliers:

σ̂t = min {σt, σt−1, .., σt−nσ+1}, (6)

where nσ is a hyperparameter tuned on validation set. In all of our
experiments nσ = 8 worked well. The idea behind such modifica-
tion is the following: in general, variance seems to be hard to predict,
so the network sometimes makes mistakes. Clicking sounds occur
when the network predicts variances that are too large, that’s why
we need to avoid variance outliers that correspond to large values.
We analyzed excitation signals and came to conclusion that in many
cases excitation is homoscedastic (i.e. has the same finite variance)
during 10-ms frame. Thus, it is quite easy to correct mistakes in vari-
ance by some robust aggregation of a small number nσ of previous
variance values. Actually, any aggregation function that is robust to

6206

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 01:11:11 UTC from IEEE Xplore.  Restrictions apply. 



Table 1. Mean Opinion Scores for ground truth records and speech synthesized with two LPCNet models.
Dataset Language Gender Duration Listeners Ground Truth Original LPCNet Gaussian LPCNet

LJSpeech [21] English Female 24h 50 4.80± 0.03 4.51± 0.04 4.61± 0.04
CSS10 [22] German Female 17h 20 4.54± 0.07 4.48± 0.07 4.40± 0.07

Internal Russian Male 26h 40 4.67± 0.04 4.52± 0.05 4.61± 0.04
CSS10 Spanish Male 24h 30 4.81± 0.03 4.72± 0.04 4.77± 0.04
CSS10 French Male 19h 20 4.54± 0.06 4.49± 0.07 4.43± 0.07

outliers with large values can be used (e.g. median), but we chose
simply to compute minimum.

The second stage resembles the trick from Original LPCNet al-
gorithm. Since we sample fromN (µt, σ̂t

2) a huge number of times
(16k for a second of audio), extreme values of excitation et (e.g. near
the boundaries −1.0 and 1.0) are sometimes generated even if pre-
dicted variance is close to correct. That’s why instead of sampling
fromN (µt, σ̂t

2) we sample from truncated normal distribution with
the same parameters µt and σ̂t and with support [µt − σ̂t, µt + σ̂t]
– it guarantees that we never generate excitation et that lies out-
side this interval. In practice, we use acceptance-rejection method
[23] to sample from truncated normal distribution which is quite ef-
fective since acceptance ratio is very high (most of samples from
N (µt, σ̂t

2) lie inside the interval [µt − σ̂t, µt + σ̂t]).

4. EVALUATION

4.1. Human Evaluation

Results of subjective evaluation of two LPCNet algorithms are
shown in Table 1. We chose crowd-sourcing platform Figure Eight
to perform human evaluation and Mean Opinion Score (MOS) as
target metric. LPCNet models synthesized speech conditioned on
ground truth acoustic features rather than features generated by
some backend model because our goal was to test vocoder quality
only.

Original and Multisample Gaussian LPCNet models were
trained on five different datasets representing different languages
and speaker genders. Datasets contained short audio records (most
of them between 4 and 12 seconds) downsampled to 16kHz sampling
frequency. Hyperparameters (e.g. nσ and number of units in GRUB

layer) were tuned on a validation set containing 10 utterances. Test
set consisted of 20 held-out utterances for each language. Each of
these utterances was synthesized by both Gaussian and Original
LPCNet models. Ground truth 16kHz records were also added to
the test set. Each of resulting 60 records was evaluated by 20-50
listeners (depending on the language) which were either chosen
based on language criterion (only verified speakers of the language
were allowed to participate in evaluation) or geographical criterion
(all the listeners were selected from specified countries where the
target language is official and spoken by the majority of population).
Participants were asked to estimate quality of speech on five-point
Likert scale, i.e. to classify a record as ”Bad” (1 point), ”Poor”
(2 points), ”Fair” (3 points), ”Good” (4 points) or ”Excellent” (5
points). Listeners were asked to pay attention to overall clarity of
speech, to presence of background noise (e.g. clicking sounds) or
other sonic artifacts and to correctness and naturalness of sounds
pronunciation. Some utterances from validation set were also used in
evaluation to check that listeners did not choose answers randomly:
all participants who made more than one mistake on validation set
(gave less than three points to ground truth records or more than

Table 2. Time and memory efficiency evaluation.
LPCNet Total parameters Non-zero parameters RTF
Original 1.240k 843k 0.23
Gaussian 796k 399k 0.15

three points to obviously bad sounding records that were generated
for this specific purpose of testing listeners’ attention) were excluded
from experiment.

Mean Opinion Scores and 95% confidence intervals are reported
in Table 1. The results show that Multisample Gaussian and Orig-
inal LPCNet models synthesize speech of approximately the same
quality. Also, we can conclude that Multisample Gaussian LPCNet
is more sensitive to quality and amount of training data – we see
that it performs better when trained on datasets with longer overall
duration and better quality (as estimated by the listeners). Gaussian
LPCNet operates on the whole continuum of excitation values rather
than on discrete excitation space and probably this is the reason why
it needs more data of better quality to perform better.

A small subset of speech samples used in subjective evaluation
is available at https://grog37.wixsite.com/li1jkdaw.

4.2. Time and Memory Efficiency

To measure time efficiency of speech synthesis of two LPCNet ar-
chitectures, we calculated real time factor (RTF). It is defined as time
necessary to synthesize a piece of audio divided by duration of this
audio. Speech samples were synthesized on 1.80GHz Intel CPU. To-
tal number of non-zero parameters was calculated to evaluate mem-
ory efficiency. Note that for Multisample Gaussian LPCNet exactly
the same pruning technique was applied to GRUA layer, so it has
the same sparse structure as GRUA in Original LPCNet. The results
presented in Table 2 show that Gaussian LPCNet is 1.5x faster and
has twice less non-zero parameters.

5. CONCLUSION

In this work we’ve presented Multisample Gaussian LPCNet – a
modified version of LPCNet vocoder that is significantly smaller,
1.5x faster and synthesizes speech of equally high quality. Multi-
sample Gaussian LPCNet generates unquantized 16-bit speech sig-
nal and predicts two excitation samples at a time thus increasing the
algorithm efficiency and making it even more attractive for mobile
devices. Besides, released time and memory resources can be used
to enhance backend model for better overall TTS performance.

Future work on Multisample Gaussian LPCNet includes increas-
ing number of excitation samples generated at a time and making
this model suitable for operating on speech signals with sampling
frequency higher that 16kHz.
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